
 

 
Bug Bands and Monkey Saddles
Author(s): CLIFF LONG
Source: Math Horizons, Vol. 5, No. 4 (April 1998), pp. 24-28
Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America
Stable URL: https://www.jstor.org/stable/25678166
Accessed: 03-04-2021 03:15 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Taylor & Francis, Ltd., Mathematical Association of America are collaborating with
JSTOR to digitize, preserve and extend access to Math Horizons

This content downloaded from 72.49.17.183 on Sat, 03 Apr 2021 03:15:36 UTC
All use subject to https://about.jstor.org/terms



 CLIFF LONG

 Bug Bands and Monkey Saddles

 It was almost thirty years ago that I carved "a bug on a
 band" (fig. 1) patterned after a sculpture seen as a boy at
 the Museum of Science and Industry in Chicago. It was

 carved from a solid piece of white pine, to illustrate that a
 Mobius band is one-sided. It is slotted in the middle to allow

 movement of the lady bug. Once around a circular path and
 the bug is upside down; twice around and it is right-side up
 again. Such a band (or surface) is called non-orientable. This
 band also has only one edge and the band itself is called a
 spanning surface of that edge curve, meaning that the surface
 is bounded by the curve. The edge in this case can be con
 tinuously transformed to the shape of a circle (without cut
 ting or piecing).

 Over the years, IVe been quite interested in computer
 graphics and computer aided design, and even though the
 current 3D graphics packages give fantastic images, I fre
 quently find a solid model to be very helpful in gaining a
 real feeling (pun intended) for the surface under consider
 ation. Two specific surfaces come to mind?those studied by
 Art Winfree and David Hoffman which will be mentioned

 later. But often, I just enjoy the creation of an object whose

 Figure 1. A bug on a band.

 CLIFF LONG is Professor Emeritus of Mathematics at Bowling Green
 State University.

 shape appeals to me for one reason or another?mathemati
 cally, artistically or just for fun.

 Computer Controlled Carving

 My interest in computer-aided geometric design began with
 a consulting project which a colleague, Vic Norton, and I
 had with Ford Motor Company. This project introduced us
 to a computer numerically controlled milling machine which
 is a very convenient tool for simulating functions of two vari
 ables in a wooden, wax or aluminum block. I actually have a
 small milling machine in my office which I occasionally use
 to create solid models to illustrate mathematical ideas for my
 students. Three samples are shown in fig 2: a "monkey saddle",
 a numerical solution of a partial differential equation, and
 an upside down modulus surface for a cubic polynomial [6],
 The milling machine which I have is a mini three axis proto
 type designed and built by a former student, Bruce Ottens.

 Many schools now have them available in the technology
 area, and often are quite willing to share them, even with
 mathematicians, for interesting projects. This type of carv
 ing does, however, require the ability to describe the surfaces

 mathematically. Often my hand carvings are motivated sim
 ply by a picture or verbal description of an object.

 Figure 2. (a) a "monkey saddle".
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 Figure 2. (b) a numerical solution of a partial differential equation.

 Surfaces From Knots

 A knot is just a curve in three space which is homeomorphic
 to a circle, i.e., the points on the knot and circle can be
 placed in one-to-one correspondence with continuity in both
 directions. The edge of a Mobius band is the simplest ex
 ample (sometimes called the unknot), whereas, the trefoil
 knot is the simplest non-trivial knot. More involved knots
 and their spanning surfaces may frequently be seen in the
 magnificent art of sculptors Charles O. Perry [12] and David
 Chamberlain [1]?often seen on display in front of public
 buildings and as high as ten to thirty feet. While they don't
 claim to be mathematicians, a mathematical bent is certainly
 evident in their work.

 Stereo views help, but...

 Only recendy, upon seeing computer stereo images of a span
 ning surface for a trefoil knot in an article by A. T. Winfree
 on excitable media [15, p. 15], I again resorted to a wood
 carving to gain an understanding of the surface. The stereo
 images are shown in fig. 3. It is quite possible to see depth
 inherent in these views without the aid of a viewer. (Simply
 get each eye looking at its own view. A distance of about 15
 inches is best and some people find the placement of a 3 x
 5 card on edge between the eye views to be helpful. A critical

 Figure 2. (c) an upside down modulus surface for a cubic polynomial.

 restriction for stereo viewing is to keep your eye level parallel
 to the picture horizontal. Alternately closing the left and
 right eyes sometimes helps in homing in on the depth cue.)
 I thought that I had a good idea of what the surface looked
 like, but I realized partway through the carved model that I
 really did not. A flow pattern, which seemed rather evident
 in the finished carving of fig. 4, was not at all evident in the
 stereo views, due in large part to the particular parametriza
 tion used in the wire frame stereo views. The inherent flow of

 this carving encouraged me to return to the Topological Pic
 ture Book by George Francis [5], and later to the book Knot
 Theory, by Charles Livingston [9] for more recent informa
 tion on knots and spanning surfaces.

 In the meantime I was teaching third semester calculus,
 where we were encountering the Frenet frame (unit tangent,
 normal and binormal vectors to a curve at a point) deter
 mined via the tangent, velocity, and acceleration vectors to a
 curve in 3-D (such as our trefoil knots). As a result, it seemed

 natural to twist a band centered on a trefoil knot?-just to see
 how much the Frenet frame twists in space for this knot. The
 band was formed by rectangles placed perpendicular to the
 curve with their axes in the directions of the normal and

 binormal vectors. My colleague, Tom Hern, and I created
 stereo views of the band (fig. 5) using a computer graphics
 package called RayShade. The left two views in fig. 5 are
 used for those viewers who prefer cross eyed viewing and the
 right two views are for those who prefer straight ahead view

 ^^^^^^^^^^^^ Figure 3 ^^^^^^^^^^^^
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 Figure 4

 ^^^^^^ ^^^jjjjj^^ ^^^^^
 Figure 5. Left pair for cross-eyed viewing and right pair for wall-eyed ciewing.

 ing. After viewing several widths of such bands, we observed
 that expanding the width of the surface (shown in fig. 6a)

 would allow it to self-intersect in a new surface of fig. 6b,
 which entailed another wood carving to aid in understand
 ing the resulting surface shape. This hand carved model did

 not require a mathematical formula, however, the parametrized
 descriptions of its predecessors were necessary for the model
 of fig. 6a whose creation will now be described.

 Stereolithography Models

 The twisted trefoil knot surface shown in fig. 6a was created
 on a 3D Systems stereolithographic machine [16]. It is formed

 Figure 6

 from a tub of light sensitive polymer by focusing a laser beam
 on a thin layer of the polymer and hardening just that por
 tion that is needed for this level of the resulting model. Then
 a new layer of polymer is exposed above the first in order to
 form the next level of the model. The model shown is made

 up of many levels and required several hours to create?but
 once described and started, requires no operator interven
 tion in the forming process. For further information and
 examples of some outstanding surfaces created via
 stereolithography, I recommend the work of Stewart Dickson
 described in [13]. Stereolithography is one of the recent tech
 niques used in the rapid prototyping industry (which ac
 counts for a significant shortening of the lag time between

 computer aided design and a fin
 ished product) and is still rather
 expensive for casual modeling. The
 following quote is from the publi
 cation, the Edge [17], put out by 3D
 Systems [16], and indicates a very
 important application. "Stereoli
 thography models enable surgeons
 to rehearse difficult surgeries and
 create cutting templates and exact
 bone grafts before the patient ever
 enters the operating room.... help
 ing surgeons cut the operating time
 up to thirty percent." CAT scan
 information is frequendy used to
 provide the information needed for
 each level of the resulting medical
 model.
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 Figure 7

 Models From Soap Film
 It is known [9, p. 70] that every knot has at least one orientable
 spanning surface. Many of these are stable enough that they
 can be generated using soap film and wire frame models of
 the knots. These minimal surfaces are often quite beautiful,
 but short-lived. Some tips on creating and prolonging the
 images can be found in the article by Richard Courant [2].

 After many dippings and viewings, a figure-eight knot (four
 knot) managed to yield a surface similar to that shown in the
 wooden sculpture of fig. 7a?an orientable spanning surface
 of the four knot shaped much like the one in fig. 7b. The
 terminology "figure eight knot" is the common terminology
 of sailors and others who use this knot to create a large knob
 on the end of a rope to keep it from slipping through a
 pulley. The mathematical terminology "four knot" denotes
 the smallest number of crossings visible by viewing the knot

 from any direction. Returning briefly to fig. 4, it is clear that
 the surface there is not a minimal surface since it bulges out
 in places, and the question arises as to the shape of a similar
 type artistic spanning surface for a figure-eight knot. The
 proud sculptor is shown with this his favorite sculpture in
 fig. 8. This non-orientable model is also shown in fig. 7c
 where it can be compared to its defining knot. A movie
 resulting from storing 36 views of this sculpture at 10 degree

 ^^^^^^^^^^^^^^^^^^^^^^^^

 Figure 8. The author with his favorite sculpture.

 intervals can be viewed on the author's home page, http://
 www.bgsu.edu/-long, thanks to his son, Andy Long, a
 mathematician, now a Senior Fulbright Scholar at the Institute
 of Mathematics and Physics in Porto Novo, Benin, West Africa.

 The eight knot basis for these sculptures was first visualized
 using piecewise special Bezier quartic curves [10] defined as
 an interpolating curve for the eight intersection points
 shown in fig. 7b (which stem from lines drawn from the center
 to the vertices of a regular tetrahedron). However the physical
 electrical wire knot shown here is an even greater help in
 actually carving the final surface. There are of course other
 surfaces which edge on this and other figure-eight knots [5].

 A Special Minimal Surface

 One of the author's most recent surface carvings (figure 9)
 provides for a clear understanding and physical image of
 "Costa's surface" ([8],[14]), a rather recently discovered sur
 face. This surface developed from a set of equations given by

 Celso Costa and was shown by him to represent a complete
 minimal surface. It remained then for David Hoffman with

 the assistance of James Hoffman (no relation) and his com
 puter software to show what this surface really looked like,
 and in the process show that it is not self-intersecting. Its
 discovery produced only the third of what is now known to
 be an infinite set of unusual surfaces referred to as complete,
 embedded minimal surfaces with finite total curvature. (The
 two previous ones, the plane and catenoid, being known for

 over two hundred years. The helicoid meets all of the condi
 tions except finite total curvature.) It was the beautiful pic
 ture in the book by Ivars Peterson [14, p. 80] that introduced

 me to this surface and this reference is a good source for
 some of the terminology introduced in this paragraph. Once
 again, it was only after carving this crude wooden model that
 I really appreciated the surface itself. Incidentally, when mill
 ing a wax model for a surface related to Fubini's theorem for
 iterated integrals, it became obvious that there is an unex

 pected visual connection between the Fubini and Costa sur
 faces [8]. I only recently found out about an exhibit, "Beyond

 Numbers" at the Maryland Science Center in Baltimore, which
 includes information about and a large model of the Costa

 Surface. And I'm looking forward to seeing a video concern
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 Figure 9

 ing the surface produced by undergraduates at Bryn Mawr
 College under the direction of Professor Victor Donnay
 (Dormay@brynmawr.edu).

 Create Your Own Models

 The carvings and models shown here have significandy im
 proved this author's understanding of the surfaces indicated
 and the mathematics behind them, as well as instilled inter
 est in further study of related topics. One need not carve in
 wood: bring out the modeling clay and turn yourself loose.
 You may be amazed at what you'll learn in the process and
 what you can create for profit to others as well as yourself.

 You may even be lucky enough to attend a Mathematics
 and Art Conference at SUNY Albany and participate in a
 stone carving session with mathematicians and master carv
 ers Helaman Ferguson [1] and Nathaniel Friedman[4]. My
 experience with them led to the stone carving (in white ala
 baster) illustrated in fig. 10, of the previously mentioned
 orientable spanning surface of a trefoil knot.

 Figure 10

 N Figure 11 v

 Perhaps I should warn you that once you start 3D model
 ing, you may start looking at two-dimensional drawings in a
 totally different way. For example, a few months ago I ob
 served that there are at least two different recycling symbols
 in regular use?copies of which are shown in fig. 11. The
 first represents a spanning surface of a Mobius band and the
 second a spanning surface of a trefoil knot, both non
 orientable [!!].
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